Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 271.564
Filtrar
1.
World J Gastroenterol ; 30(16): 2184-2190, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38690020

RESUMEN

MicroRNAs (miRNAs), small non-coding RNAs composed of 18-24 nucleotides, are potent regulators of gene expression, contributing to the regulation of more than 30% of protein-coding genes. Considering that miRNAs are regulators of inflammatory pathways and the differentiation of intestinal epithelial cells, there is an interest in exploring their importance in inflammatory bowel disease (IBD). IBD is a chronic and multifactorial disease of the gastrointestinal tract; the main forms are Crohn's disease and ulcerative colitis. Several studies have investigated the dysregulated expression of miRNAs in IBD, demonstrating their important roles as regulators and potential biomarkers of this disease. This editorial presents what is known and what is expected regarding miRNAs in IBD. Although the important regulatory roles of miRNAs in IBD are clearly established, biomarkers for IBD that can be applied in clinical practice are lacking, emphasizing the importance of further studies. Discoveries regarding the influence of miRNAs on the inflammatory process and the exploration of their role in gene regulation are expected to provide a basis for the use of miRNAs not only as potent biomarkers in IBD but also as therapeutic targets for the control of inflammatory processes in personalized medicine.


Asunto(s)
Biomarcadores , Regulación de la Expresión Génica , MicroARNs , Humanos , MicroARNs/metabolismo , MicroARNs/genética , Biomarcadores/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Enfermedad de Crohn/genética , Enfermedad de Crohn/inmunología , Enfermedad de Crohn/metabolismo , Colitis Ulcerosa/genética , Colitis Ulcerosa/inmunología , Colitis Ulcerosa/metabolismo , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/terapia , Enfermedades Inflamatorias del Intestino/inmunología , Medicina de Precisión/métodos
2.
Sci Rep ; 14(1): 10442, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714739

RESUMEN

Spinal muscular atrophy (SMA) genes, SMN1 and SMN2 (hereinafter referred to as SMN1/2), produce multiple circular RNAs (circRNAs), including C2A-2B-3-4 that encompasses early exons 2A, 2B, 3 and 4. C2A-2B-3-4 is a universally and abundantly expressed circRNA of SMN1/2. Here we report the transcriptome- and proteome-wide effects of overexpression of C2A-2B-3-4 in inducible HEK293 cells. Our RNA-Seq analysis revealed altered expression of ~ 15% genes (4172 genes) by C2A-2B-3-4. About half of the affected genes by C2A-2B-3-4 remained unaffected by L2A-2B-3-4, a linear transcript encompassing exons 2A, 2B, 3 and 4 of SMN1/2. These findings underscore the unique role of the structural context of C2A-2B-3-4 in gene regulation. A surprisingly high number of upregulated genes by C2A-2B-3-4 were located on chromosomes 4 and 7, whereas many of the downregulated genes were located on chromosomes 10 and X. Supporting a cross-regulation of SMN1/2 transcripts, C2A-2B-3-4 and L2A-2B-3-4 upregulated and downregulated SMN1/2 mRNAs, respectively. Proteome analysis revealed 61 upregulated and 57 downregulated proteins by C2A-2B-3-4 with very limited overlap with those affected by L2A-2B-3-4. Independent validations confirmed the effect of C2A-2B-3-4 on expression of genes associated with chromatin remodeling, transcription, spliceosome function, ribosome biogenesis, lipid metabolism, cytoskeletal formation, cell proliferation and neuromuscular junction formation. Our findings reveal a broad role of C2A-2B-3-4, and expands our understanding of functions of SMN1/2 genes.


Asunto(s)
Exones , Atrofia Muscular Espinal , Proteoma , ARN Circular , Proteína 1 para la Supervivencia de la Neurona Motora , Proteína 2 para la Supervivencia de la Neurona Motora , Transcriptoma , Humanos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Proteoma/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Células HEK293 , Exones/genética , Regulación de la Expresión Génica
3.
J Transl Med ; 22(1): 440, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720358

RESUMEN

PURPOSE: To explore the impact of microRNA 146a (miR-146a) and the underlying mechanisms in profibrotic changes following glaucoma filtering surgery (GFS) in rats and stimulation by transforming growth factor (TGF)-ß1 in rat Tenon's capsule fibroblasts. METHODS: Cultured rat Tenon's capsule fibroblasts were treated with TGF-ß1 and analyzed with microarrays for mRNA profiling to validate miR-146a as the target. The Tenon's capsule fibroblasts were then respectively treated with lentivirus-mediated transfection of miR-146a mimic or inhibitor following TGF-ß1 stimulation in vitro, while GFS was performed in rat eyes with respective intraoperative administration of miR-146a, mitomycin C (MMC), or 5-fluorouracil (5-FU) in vivo. Profibrotic genes expression levels (fibronectin, collagen Iα, NF-KB, IL-1ß, TNF-α, SMAD4, and α-smooth muscle actin) were determined through qPCR, Western blotting, immunofluorescence staining and/or histochemical analysis in vitro and in vivo. SMAD4 targeting siRNA was further used to treat the fibroblasts in combination with miR-146a intervention to confirm its role in underlying mechanisms. RESULTS: Upregulation of miR-146a reduced the proliferation rate and profibrotic changes of rat Tenon's capsule fibroblasts induced by TGF-ß1 in vitro, and mitigated subconjunctival fibrosis to extend filtering blebs survival after GFS in vivo, where miR-146a decreased expression levels of NF-KB-SMAD4-related genes, such as fibronectin, collagen Iα, NF-KB, IL-1ß, TNF-α, SMAD4, and α-smooth muscle actin(α-SMA). Additionally, SMAD4 is a key target gene in the process of miR-146a inhibiting fibrosis. CONCLUSIONS: MiR-146a effectively reduced TGF-ß1-induced fibrosis in rat Tenon's capsule fibroblasts in vitro and in vivo, potentially through the NF-KB-SMAD4 signaling pathway. MiR-146a shows promise as a novel therapeutic target for preventing fibrosis and improving the success rate of GFS.


Asunto(s)
Fibroblastos , Fibrosis , Cirugía Filtrante , Glaucoma , MicroARNs , Ratas Sprague-Dawley , Animales , MicroARNs/metabolismo , MicroARNs/genética , Glaucoma/patología , Glaucoma/genética , Cirugía Filtrante/efectos adversos , Fibroblastos/metabolismo , Masculino , Cápsula de Tenon/metabolismo , Cápsula de Tenon/patología , Proliferación Celular/efectos de los fármacos , Factor de Crecimiento Transformador beta1/metabolismo , Ratas , Proteína Smad4/metabolismo , Proteína Smad4/genética , FN-kappa B/metabolismo , Mitomicina/farmacología , Mitomicina/uso terapéutico , Regulación de la Expresión Génica
4.
Sci Rep ; 14(1): 10733, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730024

RESUMEN

Molecular responses to alcohol consumption are dynamic, context-dependent, and arise from a complex interplay of biological and external factors. While many have studied genetic risk associated with drinking patterns, comprehensive studies identifying dynamic responses to pharmacologic and psychological/placebo effects underlying binge drinking are lacking. We investigated transcriptome-wide response to binge, medium, and placebo alcohol consumption by 17 healthy heavy social drinkers enrolled in a controlled, in-house, longitudinal study of up to 12 days. Using RNA-seq, we identified 251 and 13 differentially expressed genes (DEGs) in response to binge drinking and placebo, respectively. Eleven protein-coding DEGs had very large effect sizes in response to binge drinking (Cohen's d > 1). Furthermore, binge dose significantly impacted the Cytokine-cytokine receptor interaction pathway (KEGG: hsa04060) across all experimental sequences. Placebo also impacted hsa04060, but only when administered following regular alcohol drinking sessions. Similarly, medium-dose and placebo commonly impacted KEGG pathways of Systemic lupus erythematosus, Neutrophil extracellular trap formation, and Alcoholism based on the sequence of drinking sessions. These findings together indicate the "dose-extending effects" of placebo at a molecular level. Furthermore, besides supporting alcohol dose-specific molecular changes, results suggest that the placebo effects may induce molecular responses within the same pathways regulated by alcohol.


Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas , Perfilación de la Expresión Génica , Efecto Placebo , Transcriptoma , Humanos , Consumo Excesivo de Bebidas Alcohólicas/sangre , Consumo Excesivo de Bebidas Alcohólicas/genética , Masculino , Femenino , Adulto , Adulto Joven , Etanol , Estudios Longitudinales , Regulación de la Expresión Génica/efectos de los fármacos
5.
Nat Commun ; 15(1): 3970, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730227

RESUMEN

High-altitude hypoxia acclimatization requires whole-body physiological regulation in highland immigrants, but the underlying genetic mechanism has not been clarified. Here we use sheep as an animal model for low-to-high altitude translocation. We generate multi-omics data including whole-genome sequences, time-resolved bulk RNA-Seq, ATAC-Seq and single-cell RNA-Seq from multiple tissues as well as phenotypic data from 20 bio-indicators. We characterize transcriptional changes of all genes in each tissue, and examine multi-tissue temporal dynamics and transcriptional interactions among genes. Particularly, we identify critical functional genes regulating the short response to hypoxia in each tissue (e.g., PARG in the cerebellum and HMOX1 in the colon). We further identify TAD-constrained cis-regulatory elements, which suppress the transcriptional activity of most genes under hypoxia. Phenotypic and transcriptional evidence indicate that antenatal hypoxia could improve hypoxia tolerance in offspring. Furthermore, we provide time-series expression data of candidate genes associated with human mountain sickness (e.g., BMPR2) and high-altitude adaptation (e.g., HIF1A). Our study provides valuable resources and insights for future hypoxia-related studies in mammals.


Asunto(s)
Mal de Altura , Altitud , Regulación de la Expresión Génica , Hipoxia , Animales , Mal de Altura/genética , Mal de Altura/metabolismo , Ovinos , Hipoxia/genética , Hipoxia/metabolismo , Humanos , Aclimatación/genética , Transcripción Genética , Análisis de la Célula Individual , Femenino , Multiómica
6.
J Gene Med ; 26(5): e3687, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38690623

RESUMEN

BACKGROUND: Bones undergo a constant remodeling, a process involving osteoclast-mediated bone resorption and osteoblast-mediated bone formation, crucial for maintaining healthy bone mass. We previously observed that miR-185 depletion may promote bone formation by regulating Bgn expression and the BMP/Smad signaling pathway. However, the effects of miR-185-5p on the osteoclasts and bone remodeling have not been elucidated, warranting further exploration. METHODS: Tartrate-resistant acid phosphatase staining was utilized to assess the differentiation ability of bone marrow mononuclear macrophages (BMMs) from mmu-miR-185 gene knockout (KO) mice and wild-type (WT) mice. A reverse transcriptase-quantitative PCR was conducted to compare differences in miR-185-5p and osteoclast marker molecules, including Trap, Dcstamp, Ctsk and Nfatc1, between the KO group and WT group BMMs. Western blot analysis was employed to observe the expression of osteoclast marker molecules. A cell-counting kit-8 was used to analyze cell proliferation ability. Transwell experiments were conducted to detect cell migration. Dual-luciferase reporter assays were employed to confirm whether Btk is a downstream target gene of miR-185-5p. RESULTS: miR-185 depletion promoted osteoclast differentiation in bone marrow-derived monocytes/macrophages. Overexpression of miR-185-5p in RAW264.7 cells inhibited differentiation and migration of osteoclasts. Furthermore, Btk was identified as a downstream target gene of miR-185-5p, suggesting that miR-185-5p may inhibit osteoclast differentiation and migration by targeting Btk. CONCLUSIONS: miR-185 regulates osteoclasts differentiation, with overexpression of miR-185-5p inhibiting osteoclast differentiation and migration in vitro. Additionally, miR-185-5p may modulate osteoclastic differentiation and migration by regulating Btk expression.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa , Diferenciación Celular , Movimiento Celular , Ratones Noqueados , MicroARNs , Osteoclastos , Animales , MicroARNs/genética , MicroARNs/metabolismo , Osteoclastos/metabolismo , Osteoclastos/citología , Diferenciación Celular/genética , Movimiento Celular/genética , Ratones , Agammaglobulinemia Tirosina Quinasa/metabolismo , Agammaglobulinemia Tirosina Quinasa/genética , Proliferación Celular/genética , Regulación de la Expresión Génica , Macrófagos/metabolismo , Transducción de Señal , Osteogénesis/genética
7.
Neuromolecular Med ; 26(1): 18, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691185

RESUMEN

Seipin is a key regulator of lipid metabolism, the deficiency of which leads to severe lipodystrophy. Hypothalamus is the pivotal center of brain that modulates appetite and energy homeostasis, where Seipin is abundantly expressed. Whether and how Seipin deficiency leads to systemic metabolic disorders via hypothalamus-involved energy metabolism dysregulation remains to be elucidated. In the present study, we demonstrated that Seipin-deficiency induced hypothalamic inflammation, reduction of anorexigenic pro-opiomelanocortin (POMC), and elevation of orexigenic agonist-related peptide (AgRP). Importantly, administration of rosiglitazone, a thiazolidinedione antidiabetic agent, rescued POMC and AgRP expression, suppressed hypothalamic inflammation, and restored energy homeostasis in Seipin knockout mice. Our findings offer crucial insights into the mechanism of Seipin deficiency-associated energy imbalance and indicates that rosiglitazone could serve as potential intervening agent towards metabolic disorders linked to Seipin.


Asunto(s)
Proteína Relacionada con Agouti , Metabolismo Energético , Subunidades gamma de la Proteína de Unión al GTP , Homeostasis , Hipotálamo , Ratones Noqueados , Proopiomelanocortina , Rosiglitazona , Animales , Ratones , Hipotálamo/metabolismo , Metabolismo Energético/efectos de los fármacos , Proopiomelanocortina/genética , Proopiomelanocortina/biosíntesis , Proteína Relacionada con Agouti/genética , Subunidades gamma de la Proteína de Unión al GTP/genética , Rosiglitazona/farmacología , Masculino , Enfermedades Neuroinflamatorias/etiología , Ratones Endogámicos C57BL , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Neuropéptidos/genética , Neuropéptidos/deficiencia , Regulación de la Expresión Génica/efectos de los fármacos
8.
Sci Adv ; 10(18): eadj8042, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38691608

RESUMEN

Overactivation of the transforming growth factor-ß (TGFß) signaling in Duchenne muscular dystrophy (DMD) is a major hallmark of disease progression, leading to fibrosis and muscle dysfunction. Here, we investigated the role of SETDB1 (SET domain, bifurcated 1), a histone lysine methyltransferase involved in muscle differentiation. Our data show that, following TGFß induction, SETDB1 accumulates in the nuclei of healthy myotubes while being already present in the nuclei of DMD myotubes where TGFß signaling is constitutively activated. Transcriptomics revealed that depletion of SETDB1 in DMD myotubes leads to down-regulation of TGFß target genes coding for secreted factors involved in extracellular matrix remodeling and inflammation. Consequently, SETDB1 silencing in DMD myotubes abrogates the deleterious effect of their secretome on myoblast differentiation by impairing myoblast pro-fibrotic response. Our findings indicate that SETDB1 potentiates the TGFß-driven fibrotic response in DMD muscles, providing an additional axis for therapeutic intervention.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Fibras Musculares Esqueléticas , Distrofia Muscular de Duchenne , Transducción de Señal , Factor de Crecimiento Transformador beta , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Factor de Crecimiento Transformador beta/metabolismo , Humanos , Animales , Diferenciación Celular , Ratones , Mioblastos/metabolismo , Fibrosis , Regulación de la Expresión Génica
9.
Nat Commun ; 15(1): 3346, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693125

RESUMEN

Endurance exercise training is known to reduce risk for a range of complex diseases. However, the molecular basis of this effect has been challenging to study and largely restricted to analyses of either few or easily biopsied tissues. Extensive transcriptome data collected across 15 tissues during exercise training in rats as part of the Molecular Transducers of Physical Activity Consortium has provided a unique opportunity to clarify how exercise can affect tissue-specific gene expression and further suggest how exercise adaptation may impact complex disease-associated genes. To build this map, we integrate this multi-tissue atlas of gene expression changes with gene-disease targets, genetic regulation of expression, and trait relationship data in humans. Consensus from multiple approaches prioritizes specific tissues and genes where endurance exercise impacts disease-relevant gene expression. Specifically, we identify a total of 5523 trait-tissue-gene triplets to serve as a valuable starting point for future investigations [Exercise; Transcription; Human Phenotypic Variation].


Asunto(s)
Regulación de la Expresión Génica , Condicionamiento Físico Animal , Animales , Humanos , Ratas , Transcriptoma/genética , Herencia Multifactorial/genética , Ejercicio Físico/fisiología , Masculino , Fenotipo , Sitios de Carácter Cuantitativo , Perfilación de la Expresión Génica
10.
Clin Exp Med ; 24(1): 92, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38693353

RESUMEN

The role of RNA N6-methyladenosine (m6A) modification in immunity is being elucidated. This study aimed to explore the potential association between m6A regulators and the immune microenvironment in IgA nephropathy (IgAN). The expression profiles of 24 m6A regulators in 107 IgAN patients were obtained from the Gene Expression Omnibus (GEO) database. The least absolute shrinkage and selection operator (LASSO) regression and logistic regression analysis were utilized to construct a model for distinguishing IgAN from control samples. Based on the expression levels of m6A regulators, unsupervised clustering was used to identify m6A-induced molecular clusters in IgAN. Gene set enrichment analysis (GSEA) and immunocyte infiltration among different clusters were examined. The gene modules with the highest correlation for each of the three clusters were identified by weighted gene co-expression network analysis (WGCNA). A model containing 10 m6A regulators was developed using LASSO and logistic regression analyses. Three molecular clusters were determined using consensus clustering of 24 m6A regulators. A decrease in the expression level of YTHDF2 in IgAN samples was significantly negatively correlated with an increase in resting natural killer (NK) cell infiltration and was positively correlated with the abundance of M2 macrophage infiltration. The risk scores calculated by the nomogram were significantly higher for cluster-3, and the expression levels of m6A regulators in this cluster were generally low. Immunocyte infiltration and pathway enrichment results for cluster-3 differed significantly from those for the other two clusters. Finally, the expression of YTHDF2 was significantly decreased in IgAN based on immunohistochemical staining. This study demonstrated that m6A methylation regulators play a significant role in the regulation of the immune microenvironment in IgAN. Based on m6A regulator expression patterns, IgAN can be classified into multiple subtypes, which might provide additional insights into novel therapeutic methods for IgAN.


Asunto(s)
Adenosina , Adenosina/análogos & derivados , Glomerulonefritis por IGA , Glomerulonefritis por IGA/genética , Glomerulonefritis por IGA/inmunología , Glomerulonefritis por IGA/patología , Humanos , Adenosina/metabolismo , Metilación , Perfilación de la Expresión Génica , Femenino , Redes Reguladoras de Genes , Masculino , Regulación de la Expresión Génica , Adulto , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Proteínas de Unión al ARN/genética , Metilación de ARN
11.
J Cell Mol Med ; 28(9): e18351, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38693854

RESUMEN

Coronary artery bypass grafting (CABG) is an effective treatment for coronary heart disease, with vascular transplantation as the key procedure. Intimal hyperplasia (IH) gradually leads to vascular stenosis, seriously affecting the curative effect of CABG. Mesenchymal stem cells (MSCs) were used to alleviate IH, but the effect was not satisfactory. This work aimed to investigate whether lncRNA MIR155HG could improve the efficacy of MSCs in the treatment of IH and to elucidate the role of the competing endogenous RNA (ceRNA). The effect of MIR155HG on MSCs function was investigated, while the proteins involved were assessed. IH was detected by HE and Van Gieson staining. miRNAs as the target of lncRNA were selected by bioinformatics analysis. qRT-PCR and dual-luciferase reporter assay were performed to verify the binding sites of lncRNA-miRNA. The apoptosis, Elisa and tube formation assay revealed the effect of ceRNA on the endothelial protection of MIR155HG-MSCs. We observed that MIR155HG improved the effect of MSCs on IH by promoting viability and migration. MIR155HG worked as a sponge for miR-205. MIR155HG/miR-205 significantly improved the function of MSCs, avoiding apoptosis and inducing angiogenesis. The improved therapeutic effects of MSCs on IH might be due to the ceRNA role of MIR155HG/miR-205.


Asunto(s)
Apoptosis , Hiperplasia , Células Madre Mesenquimatosas , MicroARNs , ARN Largo no Codificante , MicroARNs/genética , MicroARNs/metabolismo , Células Madre Mesenquimatosas/metabolismo , Humanos , ARN Largo no Codificante/genética , Apoptosis/genética , Movimiento Celular/genética , Animales , Trasplante de Células Madre Mesenquimatosas/métodos , Túnica Íntima/patología , Túnica Íntima/metabolismo , Regulación de la Expresión Génica , Proliferación Celular/genética , Masculino , Supervivencia Celular/genética , ARN Endógeno Competitivo
12.
Wiley Interdiscip Rev RNA ; 15(3): e1847, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38702948

RESUMEN

The mammalian genome encodes thousands of non-coding RNAs (ncRNAs), ranging in size from about 20 nucleotides (microRNAs or miRNAs) to kilobases (long non-coding RNAs or lncRNAs). ncRNAs contribute to a layer of gene regulation that could explain the evolution of massive phenotypic complexity even as the number of protein-coding genes remains unaltered. We propose that low conservation, poor expression, and highly restricted spatiotemporal expression patterns-conventionally considered ncRNAs may affect behavior through direct, rapid, and often sustained regulation of gene expression at the transcriptional, post-transcriptional, or translational levels. Besides these direct roles, their effect during neurodevelopment may manifest as behavioral changes later in the organism's life, especially when exposed to environmental cues like stress and seasonal changes. The lncRNAs affect behavior through diverse mechanisms like sponging of miRNAs, recruitment of chromatin modifiers, and regulation of alternative splicing. We highlight the need for synthesis between rigorously designed behavioral paradigms in model organisms and the wide diversity of behaviors documented by ethologists through field studies on organisms exquisitely adapted to their environmental niche. Comparative genomics and the latest advancements in transcriptomics provide an unprecedented scope for merging field and lab studies on model and non-model organisms to shed light on the role of ncRNAs in driving the behavioral responses of individuals and groups. We touch upon the technical challenges and contentious issues that must be resolved to fully understand the role of ncRNAs in regulating complex behavioral traits. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.


Asunto(s)
ARN no Traducido , Animales , ARN no Traducido/metabolismo , ARN no Traducido/genética , Humanos , Conducta Animal , Regulación de la Expresión Génica
13.
Life Sci Alliance ; 7(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38719751

RESUMEN

Neurodegenerative diseases and other age-related disorders are closely associated with mitochondrial dysfunction. We previously showed that mice with neuron-specific deficiency of mitochondrial translation exhibit leukoencephalopathy because of demyelination. Reduced cholesterol metabolism has been associated with demyelinating diseases of the brain such as Alzheimer's disease. However, the molecular mechanisms involved and relevance to the pathogenesis remained unknown. In this study, we show that inhibition of mitochondrial translation significantly reduced expression of the cholesterol synthase genes and degraded their sterol-regulated transcription factor, sterol regulatory element-binding protein 2 (Srebp2). Furthermore, the phosphorylation of Pyk2 and Gsk3ß was increased in the white matter of p32cKO mice. We observed that Pyk2 inhibitors reduced the phosphorylation of Gsk3ß and that GSK3ß inhibitors suppressed degradation of the transcription factor Srebp2. The Pyk2-Gsk3ß axis is involved in the ubiquitination of Srebp2 and reduced expression of cholesterol gene. These results suggest that inhibition of mitochondrial translation may be a causative mechanism of neurodegenerative diseases of aging. Improving the mitochondrial translation or effectiveness of Gsk3ß inhibitors is a potential therapeutic strategy for leukoencephalopathy.


Asunto(s)
Colesterol , Quinasa 2 de Adhesión Focal , Glucógeno Sintasa Quinasa 3 beta , Ratones Noqueados , Mitocondrias , Biosíntesis de Proteínas , Proteína 2 de Unión a Elementos Reguladores de Esteroles , Animales , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Ratones , Colesterol/metabolismo , Mitocondrias/metabolismo , Quinasa 2 de Adhesión Focal/metabolismo , Quinasa 2 de Adhesión Focal/genética , Humanos , Fosforilación , Regulación de la Expresión Génica , Transducción de Señal/genética , Leucoencefalopatías/genética , Leucoencefalopatías/metabolismo
14.
Sci Rep ; 14(1): 10610, 2024 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-38719857

RESUMEN

Histone lysine methylation is thought to play a role in the pathogenesis of rheumatoid arthritis (RA). We previously reported aberrant expression of the gene encoding mixed-lineage leukemia 1 (MLL1), which catalyzes methylation of histone H3 lysine 4 (H3K4), in RA synovial fibroblasts (SFs). The aim of this study was to elucidate the involvement of MLL1 in the activated phenotype of RASFs. SFs were isolated from synovial tissues obtained from patients with RA or osteoarthritis (OA) during total knee joint replacement. MLL1 mRNA and protein levels were determined after stimulation with tumor necrosis factor α (TNFα). We also examined changes in trimethylation of H3K4 (H3K4me3) levels in the promoters of RA-associated genes (matrix-degrading enzymes, cytokines, and chemokines) and the mRNA levels upon small interfering RNA-mediated depletion of MLL1 in RASFs. We then determined the levels of H3K4me3 and mRNAs following treatment with the WD repeat domain 5 (WDR5)/MLL1 inhibitor MM-102. H3K4me3 levels in the gene promoters were also compared between RASFs and OASFs. After TNFα stimulation, MLL1 mRNA and protein levels were higher in RASFs than OASFs. Silencing of MLL1 significantly reduced H3K4me3 levels in the promoters of several cytokine (interleukin-6 [IL-6], IL-15) and chemokine (C-C motif chemokine ligand 2 [CCL2], CCL5, C-X-C motif chemokine ligand 9 [CXCL9], CXCL10, CXCL11, and C-X3-C motif chemokine ligand 1 [CX3CL1]) genes in RASFs. Correspondingly, the mRNA levels of these genes were significantly decreased. MM-102 significantly reduced the promoter H3K4me3 and mRNA levels of the CCL5, CXCL9, CXCL10, and CXCL11 genes in RASFs. In addition, H3K4me3 levels in the promoters of the IL-6, IL-15, CCL2, CCL5, CXCL9, CXCL10, CXCL11, and CX3CL1 genes were significantly higher in RASFs than OASFs. Our findings suggest that MLL1 regulates the expression of particular cytokines and chemokines in RASFs and is associated with the pathogenesis of RA. These results could lead to new therapies for RA.


Asunto(s)
Artritis Reumatoide , Quimiocinas , Citocinas , Fibroblastos , N-Metiltransferasa de Histona-Lisina , Histonas , Proteína de la Leucemia Mieloide-Linfoide , Membrana Sinovial , Humanos , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Artritis Reumatoide/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Fibroblastos/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/genética , Citocinas/metabolismo , Membrana Sinovial/metabolismo , Membrana Sinovial/patología , Histonas/metabolismo , Quimiocinas/metabolismo , Quimiocinas/genética , Regulación de la Expresión Génica , Factor de Necrosis Tumoral alfa/metabolismo , Regiones Promotoras Genéticas , Femenino , Masculino , Células Cultivadas , Persona de Mediana Edad , ARN Mensajero/metabolismo , ARN Mensajero/genética , Osteoartritis/metabolismo , Osteoartritis/patología , Osteoartritis/genética , Anciano
15.
Sci Rep ; 14(1): 10553, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719901

RESUMEN

Inflammatory bowel diseases (IBD) are a group of chronic inflammatory conditions of the gastrointestinal tract associated with multiple pathogenic factors, including dysregulation of the immune response. Effector CD4+ T cells and regulatory CD4+ T cells (Treg) are central players in maintaining the balance between tolerance and inflammation. Interestingly, genetic modifications in these cells have been implicated in regulating the commitment of specific phenotypes and immune functions. However, the transcriptional program controlling the pathogenic behavior of T helper cells in IBD progression is still unknown. In this study, we aimed to find master transcription regulators controlling the pathogenic behavior of effector CD4+ T cells upon gut inflammation. To achieve this goal, we used an animal model of IBD induced by the transfer of naïve CD4+ T cells into recombination-activating gene 1 (Rag1) deficient mice, which are devoid of lymphocytes. As a control, a group of Rag1-/- mice received the transfer of the whole CD4+ T cells population, which includes both effector T cells and Treg. When gut inflammation progressed, we isolated CD4+ T cells from the colonic lamina propria and spleen tissue, and performed bulk RNA-seq. We identified differentially up- and down-regulated genes by comparing samples from both experimental groups. We found 532 differentially expressed genes (DEGs) in the colon and 30 DEGs in the spleen, mostly related to Th1 response, leukocyte migration, and response to cytokines in lamina propria T-cells. We integrated these data into Gene Regulatory Networks to identify Master Regulators, identifying four up-regulated master gene regulators (Lef1, Dnmt1, Mybl2, and Jup) and only one down-regulated master regulator (Foxo3). The altered expression of master regulators observed in the transcriptomic analysis was confirmed by qRT-PCR analysis and found an up-regulation of Lef1 and Mybl2, but without differences on Dnmt1, Jup, and Foxo3. These two master regulators have been involved in T cells function and cell cycle progression, respectively. We identified two master regulator genes associated with the pathogenic behavior of effector CD4+ T cells in an animal model of IBD. These findings provide two new potential molecular targets for treating IBD.


Asunto(s)
Linfocitos T CD4-Positivos , Redes Reguladoras de Genes , Enfermedades Inflamatorias del Intestino , Animales , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Ratones , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Modelos Animales de Enfermedad , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Regulación de la Expresión Génica
16.
Sci Rep ; 14(1): 10595, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719908

RESUMEN

Delayed diagnosis in patients with pulmonary tuberculosis (PTB) often leads to serious public health problems. High throughput sequencing was used to determine the expression levels of lncRNAs, mRNAs, and miRNAs in the lesions and adjacent health lung tissues of patients with PTB. Their differential expression profiles between the two groups were compared, and 146 DElncRs, 447 DEmRs, and 29 DEmiRs were obtained between lesions and adjacent health tissues in patients with PTB. Enrichment analysis for mRNAs showed that they were mainly involved in Th1, Th2, and Th17 cell differentiation. The lncRNAs, mRNAs with target relationship with miRNAs were predicted respectively, and correlation analysis was performed. The ceRNA regulatory network was obtained by comparing with the differentially expressed transcripts (DElncRs, DEmRs, DEmiRs), then 2 lncRNAs mediated ceRNA networks were established. The expression of genes within the network was verified by quantitative real-time PCR (qRT-PCR). Flow cytometric analysis revealed that the proportion of Th1 cells and Th17 cells was lower in PTB than in controls, while the proportion of Th2 cells increased. Our results provide rich transcriptome data for a deeper investigation of PTB. The ceRNA regulatory network we obtained may be instructive for the diagnosis and treatment of PTB.


Asunto(s)
Redes Reguladoras de Genes , MicroARNs , ARN Largo no Codificante , ARN Mensajero , Tuberculosis Pulmonar , Humanos , Tuberculosis Pulmonar/genética , ARN Largo no Codificante/genética , MicroARNs/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Perfilación de la Expresión Génica , Transcriptoma , Células Th17/inmunología , Células Th17/metabolismo , Femenino , Masculino , Adulto , Persona de Mediana Edad , Regulación de la Expresión Génica , Pulmón/patología , Pulmón/metabolismo , ARN Endógeno Competitivo
17.
Molecules ; 29(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731499

RESUMEN

Carbon nanodots (CDs) are commonly found in food products and have attracted significant attention from food scientists. There is a high probability of CD exposure in humans, but its impacts on health are unclear. Therefore, health effects associated with CD consumption should be investigated. In this study, we attempted to create a model system of the Maillard reaction between cystine and glucose using a simple cooking approach. The CDs (CG-CDs) were isolated from cystine-glucose-based Maillard reaction products and characterized using fluorescence spectroscopy, X-ray diffractometer (XRD), and transmission electron microscope (TEM). Furthermore, human mesenchymal stem cells (hMCs) were used as a model to unravel the CDs' cytotoxic properties. The physiochemical assessment revealed that CG-CDs emit excitation-dependent fluorescence and possess a circular shape with sizes ranging from 2 to 13 nm. CG-CDs are predominantly composed of carbon, oxygen, and sulfur. The results of the cytotoxicity evaluation indicate good biocompatibility, where no severe toxicity was observed in hMCs up to 400 µg/mL. The DPPH assay demonstrated that CDs exert potent antioxidant abilities. The qPCR analysis revealed that CDs promote the downregulation of the key regulatory genes, PPARγ, C/EBPα, SREBP-1, and HMGCR, coupled with the upregulation of anti-inflammatory genes. Our findings suggested that, along with their excellent biocompatibility, CG-CDs may offer positive health outcomes by modulating critical genes involved in lipogenesis, homeostasis, and obesity pathogenesis.


Asunto(s)
Proteína alfa Potenciadora de Unión a CCAAT , Carbono , Reacción de Maillard , Células Madre Mesenquimatosas , PPAR gamma , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Humanos , Carbono/química , PPAR gamma/genética , PPAR gamma/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Proteína alfa Potenciadora de Unión a CCAAT/genética , Puntos Cuánticos/química , Regulación hacia Abajo/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/química , Azufre/química
18.
Molecules ; 29(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38731523

RESUMEN

This study reports an innovative approach for producing nanoplastics (NP) from various types of domestic waste plastics without the use of chemicals. The plastic materials used included water bottles, styrofoam plates, milk bottles, centrifuge tubes, to-go food boxes, and plastic bags, comprising polyethylene terephthalate (PET), polystyrene (PS), polypropylene (PP), high-density polyethylene (HDPE), and Poly (Ethylene-co-Methacrylic Acid) (PEMA). The chemical composition of these plastics was confirmed using Raman and FTIR spectroscopy, and they were found to have irregular shapes. The resulting NP particles ranged from 50 to 400 nm in size and demonstrated relative stability when suspended in water. To assess their impact, the study investigated the effects of these NP particulates on cell viability and the expression of genes involved in inflammation and oxidative stress using a macrophage cell line. The findings revealed that all types of NP reduced cell viability in a concentration-dependent manner. Notably, PS, HDPE, and PP induced significant reductions in cell viability at lower concentrations, compared to PEMA and PET. Moreover, exposure to NP led to differential alterations in the expression of inflammatory genes in the macrophage cell line. Overall, this study presents a viable method for producing NP from waste materials that closely resemble real-world NP. Furthermore, the toxicity studies demonstrated distinct cellular responses based on the composition of the NP, shedding light on the potential environmental and health impacts of these particles.


Asunto(s)
Supervivencia Celular , Macrófagos , Microplásticos , Supervivencia Celular/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Animales , Ratones , Nanopartículas/química , Plásticos/química , Células RAW 264.7 , Expresión Génica/efectos de los fármacos , Línea Celular , Regulación de la Expresión Génica/efectos de los fármacos , Residuos/análisis , Tamaño de la Partícula
19.
Molecules ; 29(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38731597

RESUMEN

Fibrosis is a ubiquitous pathology, and prior studies have indicated that various artemisinin (ART) derivatives (including artesunate (AS), artemether (AM), and dihydroartemisinin (DHA)) can reduce fibrosis in vitro and in vivo. The medicinal plant Artemisia annua L. is the natural source of ART and is widely used, especially in underdeveloped countries, to treat a variety of diseases including malaria. A. afra contains no ART but is also antimalarial. Using human dermal fibroblasts (CRL-2097), we compared the effects of A. annua and A. afra tea infusions, ART, AS, AM, DHA, and a liver metabolite of ART, deoxyART (dART), on fibroblast viability and expression of key fibrotic marker genes after 1 and 4 days of treatment. AS, DHA, and Artemisia teas reduced fibroblast viability 4 d post-treatment in up to 80% of their respective controls. After 4 d of treatment, AS DHA and Artemisia teas downregulated ACTA2 up to 10 fold while ART had no significant effect, and AM increased viability by 10%. MMP1 and MMP3 were upregulated by AS, 17.5 and 32.6 fold, respectively, and by DHA, 8 and 51.8 fold, respectively. ART had no effect, but A. annua and A. afra teas increased MMP3 5 and 16-fold, respectively. Although A. afra tea increased COL3A1 5 fold, MMP1 decreased >7 fold with no change in either transcript by A. annua tea. Although A. annua contains ART, it had a significantly greater anti-fibrotic effect than ART alone but was less effective than A. afra. Immunofluorescent staining for smooth-muscle α-actin (α-SMA) correlated well with the transcriptional responses of drug-treated fibroblasts. Together, proliferation, qPCR, and immunofluorescence results show that treatment with ART, AS, DHA, and the two Artemisia teas yield differing responses, including those related to fibrosis, in human dermal fibroblasts, with evidence also of remodeling of fibrotic ECM.


Asunto(s)
Artemisia , Artemisininas , Fibroblastos , Fibrosis , Humanos , Artemisininas/farmacología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Artemisia/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Supervivencia Celular/efectos de los fármacos , Metaloproteinasa 1 de la Matriz/metabolismo , Metaloproteinasa 1 de la Matriz/genética , Metaloproteinasa 3 de la Matriz/metabolismo , Metaloproteinasa 3 de la Matriz/genética , Actinas/metabolismo , Actinas/genética , Artesunato/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Arteméter/farmacología , Piel/efectos de los fármacos , Piel/metabolismo , Piel/patología
20.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731836

RESUMEN

The process of domestication, despite its short duration as it compared with the time scale of the natural evolutionary process, has caused rapid and substantial changes in the phenotype of domestic animal species. Nonetheless, the genetic mechanisms underlying these changes remain poorly understood. The present study deals with an analysis of the transcriptomes from four brain regions of gray rats (Rattus norvegicus), serving as an experimental model object of domestication. We compared gene expression profiles in the hypothalamus, hippocampus, periaqueductal gray matter, and the midbrain tegmental region between tame domesticated and aggressive gray rats and revealed subdivisions of differentially expressed genes by principal components analysis that explain the main part of differentially gene expression variance. Functional analysis (in the DAVID (Database for Annotation, Visualization and Integrated Discovery) Bioinformatics Resources database) of the differentially expressed genes allowed us to identify and describe the key biological processes that can participate in the formation of the different behavioral patterns seen in the two groups of gray rats. Using the STRING- DB (search tool for recurring instances of neighboring genes) web service, we built a gene association network. The genes engaged in broad network interactions have been identified. Our study offers data on the genes whose expression levels change in response to artificial selection for behavior during animal domestication.


Asunto(s)
Agresión , Encéfalo , Animales , Ratas , Encéfalo/metabolismo , Agresión/fisiología , Transcriptoma/genética , Análisis de Componente Principal , Perfilación de la Expresión Génica/métodos , Conducta Animal , Domesticación , Anotación de Secuencia Molecular , Masculino , Redes Reguladoras de Genes , Regulación de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA